Attention, Atom Smasher Supporters!

The atom smasher needs your help

As you may know, Pfaffmann + Associates proposed the idea to move the Westinghouse atom smasher to the site of the new Forest Hills Municipal Building, but that proposal will depend entirely on fundraising and people willing to help. They recently posted this notice:

“Now that the Forest Hills New Municipal Building is underway, I [architect Rob Pfaffmann] am posting to remind anyone who can devote time and leadership on the future of the Atom Smasher need to step forward. We are willing to donate probono time on technical feasibility and budgeting, but if this is going to be successful we need residents, Westinghouse Alums, and others with experience in fundraising to step forward! rob@pfaffmann.com”

— Posted on the New Forest Hills Municipal Building Facebook page.

 

So if anyone out there is interested and able to help out, or offer support in any way, please let them know asap!

 

 

Before / After: Atom Smasher Photos

Westinghouse atom smasher, August 2013. © Marni Blake Walter.

Westinghouse atom smasher, 2013. © MB Walter.

Noting the upcoming anniversary of the day the Westinghouse atom smasher was torn down (20 January 2015), below are links to two sets of photos I’ve taken, before and after.

Photos Before / August 2013: https://flic.kr/s/aHsjJRMBMd

Back in August 2013, I had the great fortune to tour the atom smasher up close with Mr. Barry Cassidy (who at the time was managing what we thought would be an exciting preservation/reuse project) and others in preservation and education. There was a lot of enthusiasm for all the possibilities in STEM education, and community and science history, that the atom smasher could offer, and admiration for this offbeat landmark. (And yes for its being a really cool relic to have in your neighborhood… How many people can say they have an ancient atom smasher in their town?!*)

Photos After / April and July 2015: https://flic.kr/s/aHskpXWkvW

Despite all that enthusiasm, we are faced with a different reality since 2015. During 2015 I took a few sets of updated photos in the process or aftermath of site demolition. As a neighbor who saw me there said, better get all the photos you can now…

Westinghouse atom smasher, July 2015. © Marni Blake Walter.

Westinghouse atom smasher detail, 2015. © MB Walter.

I like to document change and record the artifacts around us, so I check on the site whenever I get the chance. Obviously change over the last two years has been dramatic here. I hope readers will find these views of current conditions useful.

For anyone not familiar with Westinghouse in Forest Hills, the photos show what remains of the atom smasher—the very origin of Westinghouse Nuclear—and the pioneering Westinghouse Research Laboratories.

* Ps. If you happen to be someone who does live near another old atom smasher, please leave a comment— we’d love to hear from you too!

KDKA Broadcasting Today from Westinghouse Headquarters

Today KDKA radio is broadcasting from the Westinghouse Headquarters in Cranberry, PA.

On “The Inside Story with Marty Griffin,” they are talking about the current facilities and will also talk about the company’s history and significance. On air now, Danny Roderick, President and CEO of Westinghouse.

Here’s a link to listen live: http://pittsburgh.cbslocal.com/station/newsradio-1020-kdka/

 

The Echoes from Westinghouse at Forest Hills / Forest Hills Nuclear History

By Maury Fey and Walt Dollard

The buildings are gone now, and the giant Atom Smasher is lying on its side in a pile of rubble. That once proud symbol of Westinghouse innovation stood above the Ardmore Boulevard in Forest Hills for 75 years to mark the spot where much of our twentieth century was invented.

Westinghouse Research Laboratories, late 1930s-1940s.

Westinghouse Research Laboratories, late 1930s-1940s.

The Westinghouse Research Laboratories, “the Lab” to those of us who worked there, was started in 1916. The innovators there developed the materials and engineering technology to expand the generation of electricity, its transmission and its use in to every home and factory in America. They also developed some of the technical products that held high the shield of freedom protecting us from the axis powers in World War II. Let’s meet a few of them.

Vladimir Zworykin escaped the Russian revolution for the United States in 1918. He came to the Lab in about 1920 to work on, and patent the forerunner to modern day television. Lewis Chubb, an extremely gifted engineer who became Research Director in 1930, developed over 120 patents in the fields of radio, precision electronics, electrochemistry and high temperature materials. He recognized that if Westinghouse were to grow, new fields of science, particularly in physics would need to be added. Nuclear physics came first. The Van de Graff Generator, a five million volt pressurized particle accelerator, was built in 1937 to study nuclear reactions. It was termed the Atom Smasher, a name that has stuck to this day. Dr. Edward Condon built a gifted team of scientists for the nuclear work, including Dr. Bill Shoupp, who later became one of the leaders in the Nuclear Submarine program at Bettis. That work led to America’s Nuclear Navy and later, to the Commercial Nuclear Reactor for power generation.

Beginning in World War II, Dr. John Coltman’ s research in Microwave technology provided needed advances in radar systems, and led to the microwave ovens in today’s homes. In addition, Dr. Coltman developed the image amplifier, used in night vision systems, and which led to a revolution in medical imaging technology. At the onset of World War II, Dr. Stewart Way proposed a novel jet engine design that has revolutionized the world’s aircraft. Way’s innovation was sleeker and delivered much better performance than other designs, allowing planes to fly much faster and higher, and thus it has been universally adopted and is the basis for all jet engines in use today. Early battle tanks had a serious problem as they had to stop to fire, since the motion of the tank prevented accuracy. Engineer Clint Hanna designed a sighting system using gyroscopes to stabilize the guns so that American tanks could fire on the run, even over rough terrain. That innovation saved many a tanker’s life in combat. Westinghouse innovations outgrew the site and the Corporation relocated its Research Laboratories to a greatly expanded facility in Churchill Borough in 1956, but those innovations and many others still echo through the site.

The facility became the Commercial Atomic Power Activity (CAPA) in 1957, building upon the Navy’s concept of using nuclear energy to produce steam and generate power. The site was to see the birth and expansion of the Nuclear Power Business for the Electric Utility Industry and it witnessed a new generation of innovators and a renewed burst of innovations. A talented group of engineers including Harvey Graves, Frank Frisch, Harry Andrews and others masterfully spearheaded the breakthrough Power Reactor development effort at CAPA. Marketing Director Carroll Roseberry focused the initiative on power companies anxious to harness the power of the atom for the production of electricity. The development work moved quickly; several configurations were evaluated and the pressurized water reactor system was selected. Following the successful testing of the myriad components in its test loops and small reactor systems the team provided a 160,000 kilowatt generator at Yankee Electric in New England. It operated successfully for many years.

The Westinghouse Atomic Power Division was established at the site and Bob Wells was named as its first General Manager. By the early 1960’s, orders came in to the site for progressively larger systems as America’s demand for electricity doubled every ten years. By 1966, orders were flowing in at the rate of about one a month, and Joe Rengel was selected to lead the expansion of Westinghouse Nuclear Operations. The Advanced Reactors Division was created under John C.R. Kelly and moved to the Westinghouse Waltz Mill site. The Nuclear Fuels Division under Don Povejsil was created to design, manufacture and sell nuclear fuel. The Pressurized Water Reactors Division was established with Ted Stern as General Manager to lead the effort to design, manufacture and sell Nuclear Generation Systems to electric utilities. By 1970, the business had outgrown the little site on Ardmore Boulevard and moved into much larger quarters in Monroeville. During the past half century, the nuclear innovations at Forest Hills have continuously produced more than 10 per cent of the total electric power in the United States, and as much as 80 per cent in France. Large fractions are also produced in Japan, Spain, Belgium, Sweden, South Korea and Taiwan. Westinghouse became the world’s leader in electric power, a position it holds today.

Over much of the twentieth century, the site on the bluff in Forest Hills witnessed many innovations that influence our America’s defense, the nation’s increasing thirst for electricity, and the items we use every day. For the past seventy-five years, the symbol of that culture of innovation was that large Van de Graff generator – the Atom Smasher, and the faded echoes of the multitude of gifted innovators who created so much of the world we live in.

 

Forest Hills Nuclear History

The commercial nuclear history at Forest Hills began in 1956 when Westinghouse began moving in the Commercial Atomic Power Activity, CAPA, onto the site. At the time this was a very small activity of a few dozen people led by Carroll Roseberry, a seasoned marketing executive. Things moved quickly. By the time I came to Westinghouse in November 1957 several major projects were being designed. They were the Westinghouse Test Reactor (WTR), the Yankee Electric Reactor (Yankee), the Belgian Thermal Reactor (BR-3), and the Pennsylvania Advanced Reactor (PAR). The WTR was a small materials and fuel test reactor that was built and operated at Waltz Mills, PA for several years until a fuel leak occurred eventually leading to its shutdown and dismantlement. Yankee was a 160 megawatt (electric) pressurized water reactor which operated for many years in Massachusetts and was a huge success. The BR-3 was a small 11.5 mwe reactor which operated successfully in Belgium. The PAR was an advanced D2O moderated homogeneous reactor project that was dropped in 1959 as commercially uneconomic. By then the operation had been renamed the Westinghouse Atomic Power Department and Robert Wells became General Manager.

All of these reactors were designed at Forest Hills. In addition, the fuel for the Yankee and BR-3 reactors was manufactured in the high bay building there. The PAR Project needed to do a great deal of high pressure loop testing and a long term legacy of this failed project were some excellent test loops that were used for years to test pressurized reactor concepts.

In 1959 Westinghouse secured an order for the Carolinas-Virginia Tube Reactor (CVTR) for a prototype heavy water reactor from a group of southeastern electric utilities with some Atomic Energy Commission design funding. The CVTR was built and operated successfully but could not compete economically with the pressurized water reactor and no others were built.

In about 1960 Westinghouse got an order from General Public Utilities to build a small 5 mwe demonstration and test reactor to be built in Saxton, PA. This reactor was built and operating in three years. At the same time Westinghouse received orders for 240 mwe reactors for both Italy and France, as well as a 450 mwe reactor to go to California and a 630 mwe reactor to go to Connecticut. All of these projects were designed at Forest Hills and were successfully completed.

About this time Woodrow (Woody) Johnson was made General Manager. Obviously we were growing rapidly. After leading us for several years Woody was transferred to run the Astronuclear Laboratory after Sid Krasic contracted incurable cancer which soon after killed him. Joe Rengel replaced Woody which was about in 1964.

After several years with only one sale (in Spain) things really started to pick up in late 1965. For a while we were almost getting one order each month and we were outgrowing Forest Hills. In May 1966 a big announcement was made. WAPD was split into three divisions. The Advanced Reactors Division was created under John C.R. Kelly Jr. and quickly moved to Waltz Mills giving a little breathing room. The Pressurized Water Systems Division WRSD under Ted Stern was made the lead nuclear division for pwr sales, plant design and projects. The Nuclear Fuel Division under Don Povejsil was created to design, manufacture, and sell the nuclear fuel. Since the early 1960’s the nuclear fuel was made in Cheswick. All of these divisions continued to report to Joe Rengel who was made a corporate vice president and moved to Gateway. The growth of the divisions still at Forest Hills was unstoppable and overwhelmed the site. First large chunks of people were moved to Penn Center in Wilkins Township and in 1970 almost everyone else was moved to the newly constructed Nuclear Center in Monroeville. Only the laboratory functions, the loops, and the machine shop remained in Forest Hills. I believe that Arnold Kitzes remained behind to manage the site. The site continued to be used by the nuclear divisions for another 15 years but in an increasingly diminished role.


Walter Dollard worked at Forest Hills as Marketing Manager of the Nuclear Fuel Division. After the move to the Nuclear Center he became General manager of the Nuclear Fuel Division.

Maury Fey began work at the Forest Hills site from 1953 to 1956, as a young Laboratory Assistant to Dr. Stewart Way, the inventor of the modern Jet Engine. He retired forty years later as Special Projects Manager in the Distribution and Control Business Unit. Currently he serves as President of the Westinghouse SURE Retiree Association.

Part of the text above appeared in an online newsletter. Many thanks to the authors for their firsthand accounts of Westinghouse in Forest Hills.